Asymptotic expansions for sums of nonidentically distributed Bernoulli random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic expansions for sums of block - variables under weak dependence

Let {X i } ∞ i=−∞ be a sequence of random vectors and Y in = f in (X i,ℓ) be zero of length ℓ and where f in are Borel measurable functions. This paper establishes valid joint asymptotic expansions of general orders for the joint distribution of the sums n i=1 X i and n i=1 Y in under weak dependence conditions on the sequence {X i } ∞ i=−∞ when the block length ℓ grows to infinity. Similar exp...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Poisson Approximation for Sums of Dependent Bernoulli Random Variables

In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.

متن کامل

Asymptotic Expansions for Distributions of Compound Sums of Random Variables with Rapidly Varying Subexponential Distribution

Wederive an asymptotic expansion for the distribution of a compound sumof independent random variables, all having the same rapidly varying subexponential distribution. The examples of a Poisson and geometric number of summands serve as an illustration of the main result. Complete calculations are done for a Weibull distribution, with which we derive, as examples and without any difficulties, s...

متن کامل

Asymptotic Expansions for Distributions of Compound Sums of Light Subexponential Random Variables

Ph. Barbe, W.P. McCormick and C. Zhang CNRS, France, and University of Georgia Abstra t. We derive an asymptotic expansion for the distribution of a compound sum of independent random variables, all having the same light-tailed subexponential distribution. The examples of a Poisson and geometric number of summands serve as an illustration of the main result. Complete calculations are done for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1989

ISSN: 0047-259X

DOI: 10.1016/0047-259x(89)90111-5